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Large complex systems are ubiquitous in the real world, ranging from physical and biological to
social and technological systems [1]. The adjacency random matrix plays a central role in this context,
as it describes the interactions among the individual elements that compound these large complex
systems. The empirical spectral density of the adjacency random matrix and the localization of its
eigenvectors are key quantities to understand a variety of dynamical processes on complex networks
(or random graphs) [2, 3]. The spectral and localization properties of the adjacency random matrix are
given by functions of the diagonal elements Gii of the resolvent matrix G. The imaginary part of Gii

determines the local density of states (LDOS), which counts the number of states at a certain eigenvalue
λ at node i. The average of the LDOS over all the nodes determines the empirical spectral density,
while The average of |Gii|2 gives information about eigenvector localization throughout the inverse
participation ratio (IPR), which characterizes the volume of the eigenvectors. The probability density
function of Gii satisfies a system of distributional equations [4, 5, 6], providing a solid foundation
to study the spectral and localization properties of heterogeneous random graphs. Heterogeneity is
broadly associated with local fluctuations in the graph structure, such as randomness in the degrees or
in the interaction strengths between the nodes (the degree of a given node counts the number of edges
attached to it). Although the resolvent distributional equations have led to enormous progress, they
admit analytical solutions only for random graphs with a homogeneous structure [5, 7, 8]. In a recent
paper [9], the resolvent equations for the configuration model of random graphs with a geometric degree
distribution have been studied in the high connectivity limit, i.e., when the average degree c becomes
infinitely large. It is shown in this paper that the average resolvent satisfies a transcendental equation,
and the spectral density diverges at the center of the spectrum. These findings are interesting because
they suggest the existence of a new class of solutions for the distributional equations of the resolvent in
the high connectivity regime, which lies between the sparse (when the average connectivity is finite) and
the dense regime (when the random graph becomes fully connected). Moreover, these analytical results
also imply that the spectral density of random graphs in the high connectivity limit is not typically
governed by the Wigner semicircle law of random matrix theory [10], as it is rigorously proven in
[11]. Indeed, the Wigner law universality only holds for random graphs with degree distributions that
become highly concentrated around its mean value for c → ∞. In other words, the average connectivity
is large, but the fluctuations in the network are still relevant for the spectral properties. The analytical
results obtained in [9] are limited, however, to a geometric degree distribution. In this work [12], we
generalize the results of [9] and derive analytical solutions for the resolvent distributional equations
of random graphs with arbitrary degree distributions in the high-connectivity limit. In this context,
we perform a detailed analysis of the impact of degree fluctuations on the spectral density, the inverse
participation ratio, and the distribution of the local density of states. For random graphs with a
negative binomial degree distribution, we show that all eigenvectors are extended and that the spectral
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density unveils a logarithmic or a power-law divergence when the variance of the degree distribution
is sufficiently large. We elucidate this singular behaviour by showing that the distribution of the
LDOS at the center of the spectrum exhibits a power-law tail determined by the variance of the degree
distribution. In addition, we show that in the regime of weak degree fluctuations the spectral density
of random graphs with a negative binomial degree distribution has finite support, which promotes the
stability of large complex systems on random graphs.

We consider a simple and undirected random graph withN nodes. The network topology is specified
by the components of the adjacency random matrix A. We generate A according to the configuration
model of networks [1, 13, 14] in which a random graph is chosen uniformly at random from the set
of all random graphs with a given degree sequence K1, . . . ,KN generated from a prescribed degree
distribution pk. In the high connectivity limit, the spectral density and the inverse participation ratio
are, respectively, given by
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with z = λ− iϵ lying on the lower complex half-plane and J2
1 denoting the variance of the distribution

that defines the coupling strengths between the graph nodes. The variable ⟨G⟩ satisfies the fixed-point
equation
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In the high connectivity limit, the fluctuations in the random graph are captured by the empirical
distribution of the re-scaled degrees ν(κ), which is defined as
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The solution of the self-consistent equation given by (3) determines each and every equation of this
work.

For a negative binomial degree distribution p
(b)
k , one can investigate the role of degree fluctuations

on the spectral and localization properties of random graphs in terms of a single parameter in the high

connectivity limit, given by the relative variance of p
(b)
k , i.e.
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By considering the negative binomial distribution, we obtain a simple expression for the distribution
of the LDOS at z = 0, viz.
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Γ(α)Jα
1

e
− α

J1y
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. (6)

Equation (6) reveals the unbounded character of the LDOS fluctuations at λ = 0. We show in this
work that the spectral density diverges for α ≤ 1 at λ = 0 (see Figure 1). In this regime, the above
result helps us to clarify this singular behaviour. The power-law tail of (6) exhibits a divergence in
the q-th moment yq =

∫∞
0 dyyqP0(y) for α ≤ q, which explains the singularity of the spectral density

at λ = 0, for α ≤ 1. In addition, the non-singular, ϵ−independent behaviour of (6), confirms the
extended phase of the eigenvectors in the high connectivity limit at λ = 0.

In summary, this work unveils non-trivial results for the resolvent distributional equations of undi-
rected random graphs with a heterogeneous structure in the high connectivity limit. All of our results
are determined solely in terms of the empirical spectral density of the re-scaled degrees and the complex
variable ⟨G⟩, in which the latter satisfies a self-consistent equation.
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Figure 1: The spectral density of random graphs with a negative binomial degree distribution in the
high-connectivity limit. The parameter 1/α controls the relative variance of the degree distribution
(see Eq. (5)). The solid lines are the theoretical results derived from solving Eqs. (1) and (3) for
ϵ = 10−3 and J1 = 1. The red circles are numerical diagonalization results obtained from an ensemble
of 104 × 104 adjacency random matrices. The dashed blue curve in the right panel represents the
Wigner semicircle law.
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